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"It's funny how many of the best ideas are just an old idea back-to-front." 
Douglas Adams 

Abstract. In this paper, two efficient approaches will be discussed that support linear network analysis: supernode 
analysis (SNA) and reduced loop analysis (RLA). By means of some selected example networks, these methods 
will be demonstrated and, thus, it will be shown that calculations can be dramatically simplified. In this way, 
all network situations can be handled. There are obvious advantages to SNA as it combines the MNA and the 
straightforward manual processing of the network. A very efficient solution strategy is obtained without source 
shifting and other common, less directed methods being used. SNAIRLA and symbolic algebra fit extremely well 
together. Thus an algorithm that supports the symbolic calculation of networks by means of supernodes which 
has been conceptualized and implemented in the analog design expert system EASY will be presented in detail. 
Above the educational aspect, it should be noted that the computer can now take a systematic approach to MNA 
and network analysis in general. 

1. Introduction 

In recent years, symbolic methods have become increas- 
ingly important in the equation-based nonfixed topology 
approach to the automated design of analog circuits. 
Contrary to numerical calculations, symbolic calcula- 
tions tend to be very complicated and time-consuming, 
especially if inversion of large matrices-typically gen- 
erated-must be performed. Thus, in order to make 
symbolic network analysis feasible, it is necessary to 
reduce the amount of mathematical work the task re- 
quires, to an absolute minimum. This can be achieved 
by first selecting an analysis method appropriate to the 
task, and then, systematically taking advantage of forced 
conditions implied by the network. 

In this paper, two efficient approaches will be dis- 
cussed that support linear network analysis: supernode 
analysis (SNA) and reduced loop analysis (RLA). By 
means of some selected example networks, these meth- 
ods will be demonstrated and, thus, it will be shown 
that calculations can be dramatically simplified. Since 
the simplified linear modeling of amplifier circuits such 
as OpAmps and transistors through controlled sources 
is becoming increasingly important, this aspect will also 
be covered by the paper. Special importance will be 
attached to the treatment of controlled sources with 

infinite gain and their nullator/norator equivalents. A 
few additional rules are appended to SNA and RLA 
which make these approaches cope with nullors. An 
example network containing nullors will then be ana- 
lyzed with SNA and RLA to demonstrate the universal- 
ity and efficiency of the methods in all conceivable 
situations. Finally, some ideas will be presented on how 
SNA can be implemented on a computer; it will be 
shown how to automatically generate a smaller system 
of equations in comparison to popular methods. This 
can be achieved by using a set of general rules for each 
type of network element combined with the topological 
information supplied by the network. 

2. Basic Relations and Theory 

Before launching into the discussion of efficient network 
analysis techniques, a remark must be made on an old 
bad habit which can be traced back to the time of 
Kirchhoff himself and has still not been rooted out. 
Very often, in literature as well as in lectures, loop equa- 
tions are set up as sums of branch voltages, giving 
something like the following for each loop: 
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Then, the ui are expressed one by one in terms of loop 
currents, and finally, those intermediate results are rein- 
serted in the above equation. This procedure is not actu- 
ally incorrect, but, it is contrary to all efforts that try 
to avoid the introduction of unnecessary variables and 
equations. 

To introduce unnecessary variables and equations 
complicates the system of equations that need to be 
solved. Furthermore, it obstructs any attempt towards 
applying loop analysis to networks containing elements 
that have no impedance representation at all, such as 
current sources and open-circuit branches. In a similar 
way, everything mentioned here applies to the setting 
up of node equations as well. 

There exist several approaches to the systematic for- 
mulation of network equations which either require the 
network to contain certain types of elements only or 
which yield a larger number of equations but can handle 
all types of elements. A well-known example for the 
latter is modified nodal analysis (MNA). Regrettably, 
MNA introduces additional equations although there 
should be no need to set up more than n - 1 equations 
if there are n nodes1 in the network. Likewise, 1 loops 
should not yield more than 1 equations for any given 
network. Actually, there is no reason at all why current 
sources should not appear in networks to be analyzed 
with loop analysis (LA). For example, if a source cur- 
rent i could be identified with one independent loop 
current jk, the loop equation to obtain jk would not 
even need to be set up, as jk is equal to i. The same 
applies to nodal analysis (NA). If a voltage source is 
considered as a forced potential difference of u between 
its two terminal nodes (A) and (B), then one potential 
would be immediately known if either of the potentials 
VB or VA were known. It turns out that every current 
source sets a forced condition for LA much in the same 
way that every voltage source does for NA. Conse- 
quently, each forced condition reduces the degree of 
freedom of the independent equations by one. These 
approaches will be called supernode analysis (SNA) 
and reduced loop analysis (RLA). 

3. Manual Equation Setup and Motivating Examples 

Before some examples can be calculated to illustrate 
the back-to-front idea underlying these approaches, a 
clear definition of what supernodes are must be made 
before they are used. 

DEFINITION. Supernodes are generalized cut-sets2 
enclosing independent and/or dependent voltage sources 
[I]. 

These special cut-sets will be used in a very efficient 
way as will be shown below. 

3.1. Algorithm for Setting Up SNA Equations 

To set up the equations needed for SNA done by hand, 
follow these steps: 

1. Label each of the n nodes of the network, one of 
which must be the reference node. Thus (n - 1) node 
voltages have to be taken as independent variables. 

2. Mark all supernodes by surrounding all the cut-sets 
of voltage sources (s is number, no matter whether 
dependent or independent) by a closed line. 

3. Set up all forced conditions for each supernode. Use 
the forced conditions to eliminate s node voltages. 
Take one reference node voltage of each supernode 
as the independent variable. 

4. Set up the remaining (n - s - 1) generalized cut- 
set equations. (Set up one equation for each super- 
node as well as for every remaining regular node.) 

Remark. Controlling currents have to be expressed in 
terms of node voltages and element relations. This 
might require additional node equations. 

3.2. Algorithm for Setting Up RLA Equations 

The setup of the equations for RLA can be divided into 
the following steps: 

1. Remove all current sources (s in number, dependent 
or independent) from the network. 

2. Introduce (1 - s) loop currents for the remaining 
(1 - s) independent closed loops. 

3. Reinsert the current sources step by step and assign 
only one loop current to a closed loop laid across 
this source in each step. 

4. Identify all loop currents flowing through the current 
sources with the source currents themselves. 

5 .  Set up all remaining loop equations. Express all volt- 
ages in these loops in terms of loop currents, the con- 
straint equations from step 4, and element relations. 

6. If there are voltage controlled sources, additional 
equations have to be set up. 
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Another procedure to obtain an optimized set of 
loops is to generate a tree from the network in which 
the current sources are located within the interconnec- 
tion branches. This tree approach can also be used to 
prove the correctness of RLA. Furthermore, it should 
be relevant to support the implementation of RLA on 
a computer, because there are several methods to find 
exactly those trees by making use of the nodal incidence 
matrix A [3]. 

The following examples will hopefully put aside any 
difficulties. 

3.3. Example Demonstrating SNA 

In the network shown in figure 1, there are six loops 
and two independent current sources: this yields 6 - 2 
= 4 equations when RLA is applied. On the other 
hand, when using SNA, a total of one supernode (SN1) 
equation and one element equation for the CCVS are 
needed. This result is arrived at by identifying five 
nodes, taking into account the four voltage sources, and 
deducing the one required supernode equation. The 
facts listed above favor the supernode approach to 
reduce the work most efficiently. 

Fig. 1. Example to demonstrate MNA and SNA. 

Now the steps for the supernode method are applied: 

1. All nodes are labeled by Vl, . . . , V5 respectively. 
2. Two supernodes are found and marked (see above). 
3. The forced conditions are set up (reference voltage 

of supernode SN1 is Vl): The additional equation 
for the CCVS is V3 - Vl = rG4(Vl - V5); this 
directly applied results in 

4. Now one supernode equation can be written down 
straightforward, directly expressing node potentials 
via (f 1) to (f 4) (SNo belongs to the reference node, 
so no extra node equation is needed): 

which is only one independent equation with Vl as 
unknown. 

3.4. Ekample Demonstrating RLA 

Since the network shown in figure 2 contains no 
voltage sources or short-cut branches, it seems to be 
suited perfectly to standard nodal analysis. A 3x3 
matrix would have to be set up and inverted, if this 
method was used. By counting the number of loops and 
subtracting the number of current sources it turns out, 
that only equation remains to be solved if RLA is 
applied. 

Following the strategy for the network on the left- 
hand side results in the steps listed below: 

Removing the current sources leaves only one closed 
loop. 

' 3  = 1 ' j2  = I,, 

Fig. 2. Example for RLA. 
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2. The loop current jl is assigned to this loop. 
3. Reinserting I. closes the loop L2 (identified with 

loop current j,), then the VCCS is inserted, thus 
completing loop L3 (identified with loop current j3). 

4. The loop currents j2 and j3 are identified with j2 = 

I. and j3 = gU1, where Ul = Rl j l .  
5. By directly inserting these relations the loop equa- 

tion L1 is set up: 

This equation could be solved with ease. 
The network on the right-hand side is a little more 

complicated as the current j3 through the VCCS flows 
in the controlling branch (R4), too. For this reason, 
one more equation has to be considered: Steps 1 and 2 
are the same as above, but in step 3 the voltage U4 
across R4 has to be expressed in terms of loop currents 
and element relations: 

3. U4 = R4(-gU4 + Io) q U4 = 
R4z0 

1 + gR4 

Now the loop equation (Ll) to derive J1 is set up: 

1 
4. Ll: -Jl + R2 - g 

+ gR4 JWC~ - 

3.5. SNA in Comparison to Source Shifting 

There is an interesting relation between the equations 
which result from the SNA and RLA approach and 
those obtained from standard methods by means of 
source shifting. The crux of the problem is the question 
of where to shift which sources? This question is quite 
simple to answer now: for both methods (SNA and 
RLA), the number of equations minus the forced condi- 
tions is to be determined. The method with the smaller 

overall number (zero is a trivial case), is the approach 
which will require the sources to be shifted in that direc- 
tion. If SNA is the preferred method, then current 
sources have to be created. This may require more than 
one shift (see preceeding example). On the other hand, 
if RLA is the preferred method, then voltage sources 
have to be created through source shifting. 

The circuit (figure 3) is another example for using 
SNA. On the other hand, when using RLA, six loops 
are found, and two forced conditions are set by current 
sources. As a result, source shifting or RLA would 
result in four equations. Applying the steps of SNA to 
the network in figure 3: 

1. All nodes are labeled by Vl, . . . , V4 respectively. 
2. Two supernodes are found and marked (see above). 

Fig. 3. Network, supernodes marked 

7 

Fig. 4. Network, voltage source shifting 

Fig. 5. Transformation to Norton equivalent circuit. 
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3. The forced conditions are set up (first independent 
voltage sources, then controlled sources; reference 
voltage of supernode SN1 is V l ) :  

v3 = u02 ( f  1) 

v4 = v1 - UO1 ( f  2 )  

V2 = rG5V4 = rG5(V, - Uol)  ( f  3 )  

4. Now one supernode equation can be written down 
immediately, directly expressing node potentials via 
( f  1) to ( f  3 )  (SNo belongs to the reference node, so 
no extra node equation is needed): 

GdVl  - rGdV1 - U d )  + G ( V I  - U02) 

+ G4((Vl - U O I )  - u02) - duo2 - (Vi - Uod) 

+ G5(V1 - Uol)  - I. = 0 

which is one equation with Vl  as unknown. 

4. Applying SNA to Nullor Networks 

Since there already exist other approaches that make 
nullors fit into the concept of nodal analysis, it would 
be interesting to know if the same object could be 
accomplished with SNA. In fact, only the following 
two rules have to be observed to achieve the goal. 

1. A norator must be considered as a voltage source 
with an unknown output voltage? Therefore, norators 
are treated like all other voltage sources as far as 
their inclusion in a supernode is concerned. How- 
ever, since their output voltage is arbitrary, they do 
not furnish any constraint equations. This is logical 
as each norator causes the rank of the admittance 
matrix to be reduced by one. 

2.  Nullators must not be incorporated into a supernode. 
Each nullator forces the potentials at its two terminal 
nodes to be equal, thus eliminating one node voltage 
from the system of equations. 

To demonstrate the application of SNA to nullor net- 
works, the example network in figure 6 will be ana- 
lyzed. The task shall be to compute the node voltages 
V3 and V6. 

1. All nodes are given individual labels/variables: 
v l , .  . . ,v6. 

2 .  All supernodes are marked. In this case, there exists 
only one supernode, which consists of the two volt- 
age sources U I  and U2,  and both norators. 

Fig. 6. Example nullor network for SNA. 

3. The constraint equations are written down. The volt- 
age sources in SNO demand 

v l = u l ,  v 2 = u 2  
The nullator conditions demand 

v4 = v l ,  v5 = v2 
4. All remaining node equations are set up. There is 

no equation needed for SNO because it is the refer- 
ence node. Moreover, no equations are necessary 
for nodes 1, 2 ,  3, and 6, since they belong to SNo. 
This leaves only nodes 4 and 5 to supply the missing 
two independent equations. By immediately insert- 
ing the constraints from step 3, the following equa- 
tions are obtained. 

These equations can easily be solved for V3 and V6. 
It becomes apparent from this example and other 

research, that SNA is a truly universal and powerful 
tool for handling all imaginable network elements and 
configurations. 

5. An RLA Approach to Nullor Networks 

The following example demonstrates that RLA is also 
able to handle nullors very well. 

Figure 7 shows the network that will be analyzed 
below. In fact, it is almost the same network on which 

Fig. 7 Gyrator equivalent circuit 
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an SNA was already performed in Section 4. The task 
supposed here is to compute the output current of the 
norator on the right-hand side. Since the unknown value 
is a current, it is best to apply RLA. Thus, one loop 
current has to be defined for each of the seven indepen- 
dent loops as was shown when RLA was introduced. 
As far as the nullors are concerned, a few additional 
rules must be observed. 

1. A nullator is a suecial case of a current source. 
Hence, only one single loop current may pass through 
each nullator. Nullator loop equations are thus set up 
like regular loop equations. The nullator loop current 
is forced to be equal to zero, and consequently, does 
not appear in the equation. In this way, a nullator 
loop furnishes two equations: one loop equation and 
one constraint equation for the loop current. 
In spite of the fact that a norator may be traversed 
by any number of loop currents, it is recommended, 
however, to let only one loop current flow through 
each norator. The idea is that every norator reduces 
the rank of the impedance matrix by one, because 
its voltage as well as its current are arbitrary. Thus, 
there will be no need to set up the norator loop equa- 
tion at all, because it is linearly dependent on the 
other equations. 

3. Otherwise, if for any reason, more than one loop 
current must be laid across a norator, it is necessary 
to set up all norator loop equations with an unknown 
norator voltage u that must first be eliminated from 
all equations but one. Then this last equation which 
still contains the unwanted unknown u may be 
deleted because it is no longer needed. 

Thus, a nullator reduces the number of variable loop 
currents by one, whereas a norator saves one entire loop 
equation. 

From figure 7, the following four constraint equa- 
tions are obtained: 

Hence, only j3, j4, and j7 are left as unknowns. Loop 
equations must be set up for loops 3, 5, and 6. There 
are no equations needed for loops 4 and 7 because of 
the reasons mentioned in rule 2. 

L3: R G 3 - j 4 - I 1 ) + R 1 G 3 - j 4 ) + R l j 3 + R j 3  

+ R2G3 + I?) + R2u3 + j7 + 12) 

+ RG3 + j7 + 12) = 0 

L5: RIG3 - j 4 )  + R , j 3  = O  

Sorting the equations and variables results in the follow- 
ing 3 x 3  system that must be solved for the norator out- 
put current j7. 

L J 
The unknown op amp output current j7 can be obtained 
as j7 = 211 as a result of only a few mathematical 
steps. In this case, RLA proves to be even more effi- 
cient than SNA because SNA would have required 
another node equation to express the norator current 
in terms of node voltages and element relations. 

6. Correlation of MNA and SNA 

61. Motivating Example: Supernodes for Use in 
Computer-Aided Analysis 

Independent of the network type and size, the super- 
node method is an important and extremely useful tool 
for circuit analysis. This method is usually done by 
hand but can be easily adapted for use by computers 
with symbolic network analysis programs. This is 
especially relevant, as compact equations are much 
more important for symbolic calculations as they would 
be for numerical calculations. The cost benefit of pre- 
processing the equations, and thereby reducing them in 
number, is strongly noticed later in the much simplified 
arithmetic that must be done. For example, the sym- 
bolic solution present in figure 1 requires the setting 
up of one equation, which is also linear. The additional 
four equations are "forced conditions" which could, 
with the result of a single equation mentioned, be 
simply solved. On the other hand, the use of MNA 
would require the setting up of 10 equations with 10 
unknowns. The latter is obviously more difficult. 

61.1. Supernode Approach. A supernode analysis of 
this network has already been performed in Section 
3.3, resulting in only one independent equation which 
must be solved. This poses an interesting question: Is 
it possible to interpret and to derive the supernode 
method from the MNA or the general system of equa- 
tions? If this is possible, then the topological informa- 
tion contained in the supernode(s) could be used before 
(or in) the MNA, and thereby simplify the amount and 
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type of mathematics needed to solve the system of equa- 
tions. In the following sections, this aspect will be in- 
vestigated in detail. Furthermore, an algorithm already 
implemented in EASY [4, 51, will be presented and 
discussed. 

The MNA is a well known and commonly imple- 
mented method for the analysis and calculation of net- 
works: for example, SPICE. At this moment, only the 
results of the theory behind the MNA are needed, so 
that the matrix can be filled appropriately for each ele- 
ment. The node-based equations (KCL) represent each 
row of the aforementioned matrix. 

6 2 .  The Interpretation of a Supernode 

Consider a simple supernode with an independent volt- 
age source (figure 8). The unknowns needed for the 
usual approach are Vp,  Vq, and the supporting current 
ik. The following two equations are then set up: 

Nodep: il + i2 + i k = O  

Node q: i3 + i4 - ik = 0 

Fig. 8. Independent voltage sourced as supernode. 

The currents i l ,  i2, i3, and i4 are then soleley functions 
of nodal potentials and element relations (e.g., Ohm's 
law). But, a new variable, ik, has appeared, thus re- 
quiring an additional equation: 

The construction of a supernode means that a cut-set 
equation has to be set up, and this is nothing more than 
the addition of the two node equations in nodes p, q. 
In this way, the current ik must eliminate itself as it is 
present in a positive sense in one equation and negative 
in the other one. This results in only one cut-set equa- 
tion, in which the potentials Vp and Vq are still present 
as unknowns: 

This degree of freedom can be immediately reduced 
by applying the forced condition (*). Consequently, one 
of the two potentials remains as an unknown, whereas 

the other potential is well defined (in terms of the first), 
and is no longer an equation in the system that needs 
to be solved. The number of unknowns has been re- 
duced from three to one. For example, Vq can be ex- 
pressed as Vq = Vp - Uo. Exactly this elimination is 
recognizable in the filling pattern of the MNA matrix 
(see figure 9). It is possible to add row p to row q. One 
of the original two rows may then be deleted. In this 
manner, the variable ik can be eliminated, so that this 
column may be deleted as well. This seems to be the 
RMNA approach sometimes referenced in the litera- 
ture [6]. 

Fig. 9. M N A  fill-in patern of an independent voltage source. 

It is possible to obtain another simplification by 
using the row k as a forced condition to eliminate either 
Vq or Vp.  Consequently another column has disap- 
~ e a r e d . ~  This latter step may not be suited for a numer- 
ically based program as it is not able to perform simple 
equation manipulation. On the other hand, a symbol- 
ically based program is able to perform this extraction 
of subexpressions in terms of one or more variables 
quite simply. As a result, only one of three equations 
remain to be solved, and there is only one as opposed 
to three unknowns left to be solved for. If this were 
extrapolated onto a large system, the benefit would 
become quite apparent [8, p. 1251. In the same way, 
VCVS and CCVS can be handled. 

The description of the algorithm in Section 8 will 
clarify any doubts that may exist. 

7. Nullator, Norator, and Nullor 

Nullators and norators can be easily incorporated into 
the analysis. A nullor consists of a norator and a 
nullator. The schematic and matrix fill-in model are 
presented in figure 10. Two properties are easily 
recognized. 

Nullalor rill-in Norator lill-in 

Fig. 10. Fill-in patterns of a nullator and a norator. 
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1. Each of the nullator and norator introduce only one 
new row or column, but not both. Consequently, the 
matrix is no longer square, and the system of equa- 
tions is singular. 

2. A nullor (a nullator and a norator) eliminates one 
row and one column from the matrix. This is equiva- 
lent to constructing a supernode around the norator. 
Mathematically, row r is summed to row s, resulting 
in row r being removed from the matrix. In this way, 
the norator current is eliminated from the list of un- 
knowns. A nullator equates Vp to Vq. This collec- 
tion of unknowns means that column y is added to 
column q, and columnp can be removed. Likewise, 
Vp is removed from the list of unknowns. 

8. Algorithm Implemented in EASY 

EASY [4, 51 is an experimental analog design expert 
system developed at the Institute of Network Theory 
at the Technical University of Braunschweig. The 
following algorithm was conceptualized and imple- 
mented in EASY. The algorithm supports the symbolic 
calculation of networks by means of supernodes. It 
offers the possibility to express the results in the 
Belevitch form, which is needed to support the calcu- 
lation of networks containing nonlinear elements via 
a piecewise linear representation. This will be re- 
ferred to as the PWL Tool, and is described in more 
detail in [9]. 

The algorithm contains the following steps: 

1. Read in networklnetlists (to calculate currents, a 
short circuit branch must be identified). 

2. Set up standard matrix for MNA. 
3. Create lists needed for the evaluation. 

a. Create list of all control currents (L,). 
b. Create list of all generated currents in the MNA 

(b). 
c. Deduce list of desired currents (L3). 
d. Generate the union listlset of L, and L3 (LniOn). 

4. For all currents from node k to k', ik,k' IE Lunion: 
a. Add row k to row k'. 
b. Rename row k' to k ,  k'. 
c. Delete row k and column Ik,k,, i.e., the column 

belonging to the eliminated current. 
Explanation (4a). By the addition of row k and 

row k', a cut-set of node k and k' is generated: the 
supernode. The internal currents through the voltage 
sources and the short-circuits will be eliminated in 
this way. 

Explanation (4b). The inclusion of the row k' to 
the supernode k ,  k' still allows access to the origi- 
nal node(s), and thereby does not hinder the collec- 
tion of several nodes into a supernode. 

Note. If k or k' is the reference node (ground) 
then step 4a is not performed. In place of step 4b, 
the computer generates supernode SNo labeled with 
0, k. 

Explanation. The reference node row is linearly 
dependent on the other nodal rows. It may be deleted 
because it has been incorporated into SN,. The 
voltage reference is remembered. 

5. For all short-circuits between node j and node j': 
a. Add column j to column j'. 
b. Delete column j which is redundant. 
c. Remove row n z  + 1 which is a zero row. (Row 

m + 1 denotes the row belonging to the short- 
circuit .) 
Explanation (Sa). A short-circuit means vJ = v,,, 
and therefore, the columns are combined. 
Explanation (Sb). Row m + 1 informs that v, = 

vJ,. This is the forced condition. 
6. Fixing of desired voltages: 

a. Output of all remaining nodal voltages. 
b. User input of desired voltages in terms of node 

voltage differences. 
c. Apply the following scheme for the substitution 

of nodal voltages by branch voltages: 
(i) Potentials not needed for the description of 

the desired voltages must remain. 
(ii) Of the r branch voltages that exist, as many 

(if not all) as possible are to be used to 
replace the node voltages (s) being their 
number). For this reason, the rank of the 
matrix V must be r, otherwise the voltages 
are linearly dependent on each other. 
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By using Gauss-Seidel elimination tech- 
niques, the matrix will be restructured to ap- 
pear in the form: 

u1,. . 
4,. . 

U .  .,. . 

v4 
V . .  

In this way the r node voltages are replaced 
by r desired branch voltages and s - r nodal 
voltages. 

7. By means of Gauss-Seidel elimination, the poten- 
tials of v '  are removed and a set of equations results 
containing only the desired quantities. 

8. With user-input desired output format, the solution 
of the set of equations is constructed. 
a. Explicit solution 
b. Belevitch form (n-port equations) 

These procedures written in MACSYMA [lo] for 
EASY [4, 51 directly correspond to the described algo- 
rithm. In EASY, the results are used for 

fast simulation based on symbolic expressions to dis- 
play the results in oscilloscope-like icons that may 
be directly manipulated. 
piecewise linear tool, which needs a special preproc- 
essed Belevitch form [9]. 

9. Cookbook Approaches, Educational Aspects 

In this section, the educational value of these ideas will 
be discussed. It has been shown that source shifting, 
Norton and Thivenin equivalent circuits, superposition- 
ing of sources, calculating op amp circuits, wise use 
of approximations and simplifications in practical cir- 
cuits, and some aspects of circuit design are easy to 
embed into the global concept of SNA and RLA. Stu- 

dents have often commented that the above listed ideas 
have been juggled in a haphazard somewhat nonpredict- 
able way resulting in a poor understanding of circuit 
analysis. Consequently, many may now be able to inter- 
pret several of the SNA equations as one or the other 
of the above listed "magical tricks." 

10. Conclusions 

The supernode method, when applied manually, allows 
for a strongly reduced number of unknown voltages 
andlor currents. By not calculating the currents with 
the aid of voltage sources and short circuits, it is possi- 
ble to find efficient generalized cut-sets which consist 
only of voltage sources (either dependent or indepen- 
dent). These cut-sets are called supernodes. The de- 
scriptive equations inside the supernodes are mostly 
simplistic relationships. These should be used at a very 
early stage to simplify the required linear algebra. In 
the case of current controlled sources, the currents 
should be expressed directly from the network by use 
of element relations in terms of node potentials. 

The methods encompassing nullors and their imple- 
mentation into SNAIRLA have been made full use of 
in the development of these algorithms. Consequently, 
the use of nullors allows for the construction of simpli- 
fied networks and avoids complicated limit calculationsP 
In this way, all network situations can be handled. There 
are obvious advantages to SNA as it combines the MNA 
and the straightforward manual processing of the net- 
work. A very efficient solution strategy is obtained 
without source shifting and other common, less directed 
methods being used. SNAIRLA and symbolic algebra 
fit extremely well together. As symbolic algebra is able 
to identify and perform matrix row operations to reduce 
the degree of the system it strongly supports the ideas 
of SNAIRLA. Numerical methods, on the other hand, 
may be able to identify elementary matrix operations 
but cannot perform them on symbolic quantities. 

So far, the scope of the independent node potentials 
and loop currents has been underestimated. It has been 
the intention of this paper to look at the basic principles 
behind loop currents and nodal voltages. In many ways, 
this paper covers the very basics and may be considered 
trivial, but it identifies some very simple ideas. These 
ideas have contributed more to circuit analysis than the 
various techniques and aids commonly known. It is 
hoped that the various aspects of circuit analysis have 
been tied together in an algorithm which produces an 
efficient and compact representation of the mathematics. 
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The resulting amount of work is much less in compari- 
son to sparse tableau or MNA approaches. Above the 
educational aspect, it should be noted that the computer 
can now take a systematic approach to MNA and net- 
work analysis in general. The fact that the current 
centered representation has proven so fruitful may result 
in more research in this area. 
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Notes 

1. There exist some extreme situations in which these additional equa- 
tions are needed to express controlling currents. 

2. Generalized cut-sets are not necessarily minimal cut-sets 121. This 
means that the removal of a generalized cut-set may split the net- 
work graph into more than only two components. 

3. Remark: This notation means that the current is in the frequency 
domain, commonly known as a phasor. 

4. This intuitive explanation will be confirmed in Section 7. 
5. These compactions are exactly the same as those applied by the 

CMNA implemented in ISAAC [7. 8, 111. In fact. the CMNA 
is isomorphic to the SNA. 

6.  Not subject of this paper. 
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